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Abstract

The behavior of surface waves at long periods is indicative of subcrustal velocity 
structure.  Using recently published dispersion models, we invert surface wave group 
velocities for lithospheric structure, including lithospheric thickness, over much of the 
Eastern Hemisphere, encompassing Eurasia, Africa, and the Indian Ocean.  Thicker 
lithosphere under Precambrian shields and platforms are clearly observed, not only under 
the large cratons (West Africa, Congo, Baltic, Russia, Siberia, India), but also under 
smaller blocks like the Tarim Basin and Yangtze craton.  In contrast, it is found that 
remobilized Precambrian structures like the Saharan Shield and Sino-Korean 
Paraplatform do not have well-established lithospheric keels.  The thinnest lithospheric 
thickness is found under oceanic and continental rifts, as well as along convergence 
zones.  We compare our results to thermal models of continental lithosphere, lithospheric 
cooling models of oceanic lithosphere, lithosphere-asthenosphere boundary (LAB) 
estimates from S-wave receiver functions, and velocity variations of global tomography 
models.  In addition to comparing results for the broad region, we examine in detail the 
regions of Central Africa, Siberia, and Tibet.  While there are clear differences in the 
various estimates, overall the results are generally consistent.  Inconsistencies between 
the estimates may be due to a variety of reasons including lateral and depth resolution 
differences and the comparison of what may be different lithospheric features.

Keywords: lithosphere, lithospheric thickness, upper mantle, surface waves, Eurasia, 
Africa

1. Introduction and Motivation

The lithosphere-asthenosphere boundary (LAB) is a rheological and mechanical 
boundary between the rigid lithosphere and the more freely-flowing asthenosphere.  As 
such, seismic methods are not always thought of as the best way to derive information 
about this boundary and rather are often studied with thermal and rheological 
information.  Lithospheric thickness, however, both affects and is affected by important 
fundamental seismological observations, such as surface wave dispersion and travel time.  
For instance, lithospheric thickness determines whether regionally-propagating Pn and Sn 
waves beyond near-regional distances travel as deeper-diving upper mantle waves (in 
thick lithosphere regions), or more like true head waves (in regions with thin lithosphere).  
This has a large bearing on the travel times of these phases.

The sensitivity kernels of long period surface waves (Fig. 1a) sample the subcrustal 
lithosphere and asthenosphere, allowing us to model lithospheric structure.  For example, 
in Fig. 1b, given the same crustal structure, the dispersion at long periods changes 
dramatically depending on the thickness of the lid.  In particular, there is a large 
difference in the velocity and gradient of the dispersion curve at periods of around 100 
sec.
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a) b)

Fig. 1.  a) Velocity profile and associated sensitivity kernels for long period Rayleigh 
waves; b) Dispersion for a model where the thickness of the lid is varied from 0 – 300 
km.

The distinction is easily seen in the seismic data.  For example, in Fig. 2, we show some 
contrasting examples of dispersion curves from two regions.  The first, from Eastern 
Europe, show fast long-period group velocities that increase with period, which is 
indicative of thick lithosphere.  The second example, from Western Europe, shows 
slower long-period group velocities that decrease with period at the long-period end.  
This is indicative of thinner lithosphere that samples the asthenosphere at shorter periods 
than the other example.

It is natural to ask, then, how do the seismic (surface wave) estimates of lithospheric 
thickness compare to other seismic and non-seismic estimates of this parameter?  For 
example, as discussed in Jaupert et al. (1998) and Jaupert and Marescal (1999), what is 
described as the thermal lithosphere might not be the same as the seismic boundary.  Still, 
it is clear that seismic waves, particularly surface waves, bring a lot of information to the 
problem because of their excellent coverage of the globe, in both seismic and aseismic 
areas, as well as in both oceanic and continental regions.  



4

a) b)

 
Fig. 2.  a) Rayleigh wave (triangles) and Love wave (circles) measurements and model 
fits (solid and dashed lines, respectively) of dispersion (left) and S-wave velocity profile 
(right) from Eastern Europe. b) Same plots for Western Europe.

Several previous efforts have been made at providing large-scale maps of lithospheric 
thickness.  Using heat flow data, Artemieva and Mooney (2001) constructed a global map 
of lithospheric thermal thickness, which was subsequently updated with the TC1 model 
(Artemieva, 2006).  Conrad and Lithgow-Bertelloni (2006) constructed an estimated 
lithospheric thickness model in order to provide a depth-dependent viscosity model that 
varies laterally.  The model was not inverted for in the traditional sense, but rather 
inferred from the characteristic thickness for oceanic lithosphere of a given age and 
derived from a tomographic model under the continents.  The model is also too smooth to 
provide detailed tectonic insight.  Here, we would like to develop a high-resolution 
lithospheric thickness model developed solely from long-period surface-wave dispersion 
data.   

In this paper, we will first discuss the surface wave data and models, along with the 
methodology used to estimate lithospheric structure from surface waves.  Next, we will 
report on our results for lithospheric thickness, and discuss how the results compare to 
tectonic features.  We will then review several other lithospheric thickness estimates from 
heat flow, thermal cooling, 3-D seismic tomography models, and S-wave receiver 
functions. Lastly, we will systematically compare these other results to our own, both in 
a broad sense, and then in detail in a few particular regions.  

2. Data and Methodology

We are utilizing the surface wave dispersion data of Pasyanos (2005) in this study (Fig. 
3).  The model consists of about 41,000 quality Rayleigh wave group velocity paths and 
30,000 quality Love wave group velocity paths.  As shown in Fig. 3a, this provides 
coverage of Eurasia, Africa, Indian Ocean, Arctic Ocean, and parts of the Pacific and 
Atlantic Oceans.  From this model, we perform tomographic inversions at a number of 
periods, such as the 80 sec Rayleigh wave model shown in Fig. 3b.  
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a) b)

Fig. 3.  a) Map of surface wave dispersion paths (blue lines) for 80 sec Rayleigh waves 
with events (yellow circles) and stations (red triangles) indicated.  b) Map of surface 
wave group velocity (in km/s) for 80 sec Rayleigh waves.

The surface wave models range from 5 to 200 seconds period, although the models are 
probably only well-resolved everywhere between 7 to 120 seconds.  Because of the dense 
path coverage, the resolution of the model is fairly high, but fundamentally limited at 
long periods by the long wavelengths.  For example, the wavelength of a 100 sec surface 
wave is about 400 km and can realistically have a best resolution on the order of the half-
wavelength or 200 km.

There have been several methods proposed to estimate the thickness of the lithosphere 
using seismic models.  For example, Weeraratne et al. (2003) used the depth of the 
maximum velocity gradient (negative gradient) to define the base of the lithosphere.  
Here, we take a slightly different approach.  We used a restricted model where a well-
specified asthenosphere that underlies the lithosphere is built (hard-wired) into the model 
(Fig. 4).  The LAB is simply the interface between these two defined layers.

We use a grid search to derive layered velocity structure from the surface wave group 
velocities.  We basically use the same method as that used in Pasyanos and Nyblade 
(2007), with a modification to specify slabs at depth.  First, we fix the sediments to that 
from the Laske sediment profile (Laske and Masters, 1997) shown as item 1 in Fig. 4.  
We then solve for  v p and  v s (the average P-wave and S-wave velocities of the one-layer 
crystalline crust) indicated as item 2, crustal thickness (item 3), Pn and Sn velocity (the 
P-wave and S-wave velocities of the uppermost mantle or lid) indicated as item 4, and 
lithospheric thickness (item 5).  The vp/vs ratio in the crust and upper mantle lid is fixed 
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using a Poisson’s ratio of σ=0.26.  The asthenosphere (item 6) is specified to have a 
lower vp and higher Poisson’s ratio (σ=0.29) than the overlying lithosphere, making the 
shear-wave velocity in this layer (which the surface waves are primarily sensitive to) very 
low.  The remainder of the upper mantle (item 7) is transitioned into the ak135 model 
(Kennett et al., 1995).

Fig. 4. An example of the velocity-depth profile for the grid search.  Numbers correspond 
to items referred to in the text.  M = Moho discontinuity. LAB = Lithospheric-
Asthenospheric Boundary.

It is also important, as well, to state what we are not solving for.  We are not solving for 
any detailed variations in velocity or Poisson’s ratio in crust or lid.  In other words, when 
we solve for the lid velocity, we are solving for Pn and Sn together since the Poisson’s 
ratio in this layer is fixed to 0.26.  Similarly, we do not allow any additional layers or 
velocity variations (say, in the crust) other than the ones discussed above.  

The one item included as an additional constraint in the grid search are subducting slabs.  
The slab model used is the one included in the 3SMAC model (Nataf and Ricard, 1996), 
which specifies the location where slabs exist at various depths.  Here, we incorporate the 
slabs by increasing the vs by 5% (and vp and density by 2%) at depths where the slabs 
exist (item 8 in Fig. 4).

We then proceed to perform this grid search every 1 degree in latitude and longitude over 
a region from latitude -20° to 85° and from longitude -20° to 150°, and assemble the 
results.  Features of the crust and uppermost mantle in Eurasia and Africa, such as crustal 
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thickness and upper mantle velocities, have been discussed extensively in other papers 
(Pasyanos and Walter, 2002; Pasyanos and Nyblade, 2007).  Here, we assemble the 
lithospheric thickness results and present them in the next section before comparing them 
to other estimates in the following sections.

3. Results

Results of the grid search for lithospheric thickness are shown in Fig. 5.  Hot colors 
indicate thin lithosphere and cool colors indicate thick lithosphere.  At first glance, the 
results look very reasonable.  There is an obvious correspondence to the long-period 
group velocities as shown in Fig. 3b.  Thick lithosphere is found in the West African 
Craton (which contains the overall thickest lithosphere in our model), Baltic Shield, 
Russian Platform, Congo Craton, Indian Shield, and Siberian Shield.  Thin lithosphere is 
found along both divergent plate boundaries (oceanic rifts like the mid-Atlantic Ridge, 
the mid-Arctic, or Gakkel Ridge, and the Indian Ridge; continental rifts like the Red Sea 
and Baikal Rifts) and convergent plate boundaries (orogenic zones, subduction zones).  
We are even able to recover small-scale features like the Tarim Basin and Yangtze 
Craton.  

Fig. 5.  Lithospheric thickness (in km) estimated from the modeling of long-period 
surface waves.  Platform and shield areas are indicated by single and double hatched 
lines.  Plate boundaries are indicated by the thick black lines.
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We will highlight several other features here.  In Europe, there is a sharp boundary in the 
lithospheric thickness along the Tornquist-Teisseyre Zone (TTZ), also referred to as the 
Trans European Suture Zone (TESZ), that separates the Precambrian East European 
Platform from Mesozoic-Cenozoic Western Europe.  This has been confirmed with many 
other studies (e.g. Zielhuis and Nolet, 1994).  This boundary continues southeast through 
the Black Sea into the Caucasus and west from there through the Caspian Sea and along 
the southern edge of the Kazakh Platform.

Within North Africa, we see a similar boundary between the East Saharan meta-craton, 
which refers to a craton that has been remobilized during an orogenic event (Abdelsalam 
et al., 2002), and the true cratons to the west (West African craton) and to the south 
(Congo craton).  Clearly, the lithospheric thickness results indicate that the lithosphere 
was disrupted during this remobilization.  Another craton that has experienced 
remobilization is the Sino-Korean Paraplatform, which consolidated in the Proterozoic, 
but remobilized in the Jurassic (Griffin et al., 1998).  Like the East Saharan metacraton, 
we also find thin lithosphere in this region.  The Arabian Shield and its African 
counterpart the Nubian Shield have also undergone lithospheric thinning by recent and 
current tectonism along the Red Sea and Gulf of Aden rift.    

Off of the coast of northern Eurasia in the Arctic Ocean, the transition between 
continental thicknesses and oceanic thicknesses does not occur at the water’s edge, but 
along the continental slope, as expected.  Overall, there are interesting variations within 
Eurasia.  We see, for example, some of the thickest lithosphere in the Baltic Shield, 
Russian Platform, and Ukrainian Shield.  Moving more to the east, we don’t see any 
significant thinning associated with the Paleozoic Urals.  Within Siberia, we do see some 
variations with the Central Siberian Platform generally having a thicker lithosphere than 
the Western Siberian Platform.  Farthest to the east, there is no significant thinning along 
the plate boundary between the Eurasian Plate and North American Plate in Siberia.  This 
convergent plate boundary, which is considered to be region of broad deformation 
(Hindle et al., 2006), does not seem to have a large lithospheric signature.

In other regions recognized to have thin continental lithosphere, our model finds similarly 
thin lithospheric values.  The best examples are for the Afar region, where studies like 
Dugda et al. (2007) confirm thinned lithosphere, the Eastern Anatolian High Plateau, 
where studies find little or no lithospheric lid (Sengor et al., 2003; Gok et al., 2007), and 
the Lake Baikal Rift (Lebedev et al., 2006).

4. Comparisons Among Methods

It appears that the surface-wave derived lithospheric thickness map has a strong 
correspondence to tectonic structure.  To further assess the surface-wave derived 
lithospheric thicknesses, we compare our model to other estimates of lithospheric 
thickness.  Here we consider four: a heat flow model, a lithospheric cooling model, a 
seismic tomography model, and estimates from S-wave receiver functions.
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On continents, we compare the results to the thermal lithospheric model TC1 of 
Artemieva (2006).  The lithospheric thickness from the TC1 model is plotted in Fig. 6, on 
the same scale as in Fig. 5 for comparison.  This model is based largely on the thermal 
modeling of borehole heat flow measurements (Pollack et al., 1993), which are very 
dense in Europe and Japan, and reasonably dense in Western Russia, China, India, and 
southeast Asia.  Coverage is poor in most of North Africa and the Middle East.  In areas 
without heat flow measurements, the model is based on geophysical analogy from the 
statistics of sampled regions of similar age and tectonics.  Lithospheric thickness is then 
extracted from the thermal model using the 1300ºC isocontour.  One consideration on the 
use of thermal models is whether the 1300ºC contour is the appropriate one to use. Using 
a lower temperature would obviously result in thinner lithospheric thickness estimates, 
whereas a higher temperature would result in thicker estimates.

Fig. 6.  Lithospheric thickness (in km) of the continents estimated from the thermal 
modeling of borehole heat flow measurements (TC1 model; Artemieva, 2006).

The visual comparison between the two models is good, although there are differences in 
the boundaries of anomalies and some absolute magnitude offsets.  It also appears that 
the thermal lithospheric thickness variations are somewhat muted (higher lows and lower 
highs) when compared to the surface-wave derived model.  Areas in which we find the 
largest differences are the West Siberian Platform and the Tibetan Plateau, and we shall 
examine these regions in more detail later on in the paper.
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In oceans, we compare to a lithospheric cooling model that relates lithospheric age to 
lithospheric thickness.  The lithospheric thickness z is estimated as:

 z = 2.32 κt (1)

where the thermal diffusivity κ=1.0e-6 m2s-1 (Turcotte and Schubert, 1982) and oceanic 
ages (t) come from Mueller et al. (1997).  While deviations from this model have been 
documented for large ages, this formula provides a reasonable lithospheric thickness 
estimate for the large majority of oceanic region.  Results of the lithospheric cooling 
model (plotted on the same scale) are shown in Fig. 7.

Fig. 7.  Lithospheric thickness (in km) of oceanic crust derived from oceanic ages and a 
lithospheric cooling model.

The comparison is good in the Atlantic Ocean and Arctic Ocean, but only fair in the 
Indian Ocean and Pacific Ocean.  For example, it appears that there are misfits 
(presumably errors in the seismic model here) in the Pacific Ocean near the Philippines 
and in parts of the Indian Ocean south of the Indian subcontinent.

We can also compare our lithospheric model to seismic tomography models.  Here, we 
use the S20RTS model (Ritsema et al., 2004), but the results would be similar with other 
tomography models.  We wanted a depth that would highlight lithospheric thickness 
differences, so we selected 150 km depth.  The comparison here is very striking.  While 
we couldn’t compare lithospheric thickness directly, velocity perturbations from the 
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PREM model (Dziewonski and Anderson, 1981) match the lithospheric thickness maps 
very well.  In many ways Fig. 8 is a lower order (degree 20) version of the higher 
resolution surface wave derived model.  The lateral resolution of a degree 20 model is 
nominally about 1000 km.   Of course, the S20RTS model, like most other global 
tomography models, include long-period surface waves in the dataset, in this case 
Rayleigh wave phase velocities with T ≥ 40 sec.  

Fig. 8.  Shear-wave velocity perturbations from the tomographic model S20RTS 
(Ritsema et al., 2004).  Values are velocity differences (in %) from the PREM model.

Receiver functions are the response of the crust and upper mantle beneath a seismic 
station to an incident teleseismic phase.  More commonly applied to incident P-waves, S-
wave receiver functions (SRFs) have emerged as an analogous tool for incident S-waves 
(Farra and Vinnik, 2000).  SRFs allow identification of lithospheric-asthenospheric 
boundary (LAB) because they arrive prior to direct (S) phase, and therefore do not 
interfere with multiple reflections as they do with P-wave receiver functions.

Here, we compare our lithospheric thickness estimates to two sets of SRF-derived 
lithospheric thickness estimates.  The first is a study by Hansen et al. (2007) who 
calculated receiver functions for about 30 stations in Saudi Arabia.  The second is a study 
by Kumar et al. (2007) who calculated SRFs for stations in and around the Indian Ocean 
basin.
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Fig. 9 shows the individual station results from Hansen et al. (2007) plotted over the 
seismic and thermal maps of the Arabian Peninsula region.  While the basic trends are 
present, neither of the other models fit the SRF-estimated thicknesses particularly well.  
The RMS of the seismic misfit (40 km) is lower than the RMS of the thermal misfit (50 
km).  In many ways, however, like the comparison to the global tomography models, it 
highlights resolution differences among the various estimates.  If indeed the SRF 
estimates here are accurate, they vary laterally over such short distances that it would be 
difficult for any lower resolution model to fit the variations.  At the very least, there is 
probably some doubt about lithospheric thickness variations of over 40 km between 
stations separated only 100 km or so apart.  

a) b)

Fig. 9.  Lithospheric thickness estimates made from S-wave receiver functions in Arabia 
(colored circles) compared to seismic (left) and thermal (right) estimates of the same 
region.

In the other study, Kumar et al. (2007) used SRFs to estimate lithospheric thickness at 35 
stations and use them to infer lithospheric thickness around the Indian Ocean basin.  
Here, we seem to have the opposite issue.  The lithospheric thicknesses inferred from the 
SRFs are assumed to represent this value so well and vary so little locally that values 
throughout the area can simply be interpolated between all the sparsely-spaced points.  
The lesson here is that resolution differences play a large role in the estimates between 
models.

Next, we make a direct point-to-point comparison of results where we plot the surface 
wave derived lithospheric thickness estimates vs. other estimates of this parameter.  On 
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Fig. 10a, comparisons are made to the continental thermal model, the oceanic 
lithospheric cooling model, and the two S-wave receiver function studies.  While Fig. 
10a shows a lot of scatter in the data, much of the difference comes from resolution 
differences and offset boundaries.  The overall RMS misfit is about 50 km.  

a) b)

Fig. 10.  a) A comparison of lithospheric estimates from this study to estimates from the 
TC1 thermal model (magenta triangles), the lithospheric cooling model (blue diamonds), 
and S-wave receiver functions (cyan circles). b) Mean and range of one standard 
deviation for thermal and lithospheric cooling thicknesses in 25 km bins.  In both plots, 
the solid black lines indicate where the thicknesses are identical and where they are offset 
by 40 km.

Since there are so many points in Fig. 10a, we have also plotted the range of the thermal 
and lithospheric cooling values in Fig. 10b.  The values have been calculated by 
determining the mean and standard deviation of the points in 25 km bins.  The mean 
(solid lines) is plotted along with a range (dashed lines) from the mean plus and minus 
one standard deviation.  There were too few points for the S-wave receiver functions to 
make a useful calculation in this regard.  Also plotted on the figures (as black lines) are 
the lines for a perfect correspondence and one in which the seismic thickness is 40 km 
greater than the thermal thickness.  This is the value estimated by Jaupart et al. (1998) as 
the average depth thickness between the conductive thermal boundary layer and the top 
of the convective mantle.  While the lithospheric cooling values track closer to the center 
line, the average of the thermal model for the continents is closer to the offset one.  Solid 
evidence for any offset between the two is weak, however, because the scattering is 
probably too high to make this meaningful.

In addition to the scatter, however, is a notable “rolling over” in the trend where, when 
comparison thicknesses continue to climb, the surface wave estimates flatten.  There also 
seems to be a better overall fit for thinner lithosphere.  When we look at the rms misfit as 
a function of lithospheric thickness, the misfit is relatively flat for all thicknesses of the 
lithospheric cooling model.  We find, however, the misfit of the thermal model increases 
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from about 50 km to about 100 km for thicknesses greater than 300 km.  Referring back 
to Fig. 1b, there is excellent discrimination power between lid thickness at 100 sec, when 
the values are less than 200 km, but much poorer when the thicknesses are larger.  It 
seems like longer periods may be needed to differentiate among lithospheric thicknesses 
greater than around 200 km.  

5. Regional Comparisons

Now that we have compared methodologies in general, we would like to take a detailed 
look at several regions. Here we examine the Congo Craton in Central Africa, the 
Western Siberian Platform in northern Eurasia, and the Tibetan Plateau in Central Asia.  

The Congo Craton is a region that seems to vary somewhat among the various estimates.  
Like most cratons, the Congo Craton has a thick lithospheric keel. In our lithospheric 
model, however, the keel is not one continuous structure, but rather thins from the East 
African rift to an area under the Cuvette Centrale (Central Basin) of the Congo Craton 
(Fig. 11a).  This is discussed in some detail in Pasyanos and Nyblade (2007).  We find 
some corroborating evidence for this in the thermal models (Fig. 11b).  The seismic 
tomography model S20RTS has a more-or-less continuous high-velocity for this area, but 
wouldn’t necessarily have the resolution to see such a small-scale feature.  

a) b)

Fig. 11.   A comparison of lithospheric thickness estimates for Central Africa from a) this 
study and b) the TC1 heat flow model.

Results from other seismic models are mixed.  A study by Priestley et al. (2008) using 
waveform modeling of fundamental and higher-model surface waves finds a continuous 
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region of thick lithosphere in central and southern Africa, but other inversions of the 
same data find slow velocities under the Cuvette Centrale (Stewart Fishwick, personal 
communication).  Perhaps the resolution to the inconsistency lies in model resolution or 
in the differing depth sensitivity. This area has been partially remobilized (Daly et al., 
1992) and the multi-modal surface waves, which are sensitive to deeper structure, still 
require a high-velocity lithospheric keel at depth, while this study, primarily sensitive to 
shallower mantle structure, sees the more shallow affected mantle.   It is likely that the 
thermal structure is also sensitive to the more recent activity.  

As an experiment, we reran the structural inversions for Central Africa using surface 
wave dispersion that extends out to 150 sec.  Group velocities at this period have a 
maximum sensitivity of about 150 km – deeper than the 120 km maximum sensitivity of 
120 sec. waves (Fig. 1a).  The results are not substantially different that those plotted in 
Fig. 11a, although the area of the Congo Craton that has thinned lithosphere narrows to a 
small region near the eastern portion of the Congo River.

The next subregion that we investigate is West-Central Siberia.  Here, all models find 
thick lithosphere in the Siberian Shield, slightly thinner in the Taymyr Fold Belt, and 
very thin along the Baikal Rift.  This is all consistent with other tectonic studies of this 
region (e.g. Lebedev et al., 2006).  Where results differ significantly is in the West 
Siberian Platform.  Fast long-period surface wave velocities indicate thicker lithosphere 
(Fig. 12a), while moderately high (50 – 60 mW/m2) surface heat flow (Artemieva and 
Mooney, 2001) indicates thinner lithospheric thickness than typical shield and platform 
structures (Fig. 12b).  At 150 km depth, the S20RTS model has a continuous region of 
high-velocities running from the Baltic Shield to Eastern Siberia but, again, there is the 
question of whether this model has the resolution to see such features.  Unlike the 
Cuvette Central, the West Siberian Platform is a relatively large-scale feature that is at 
least as big as some features seen in Fig. 8.  It is still open, however, whether there is 
coverage of this (relatively aseismic) region in particular.
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a) b)

Fig. 12. A comparison of lithospheric thickness estimates for West-Central Siberia from 
a) this study and b) the TC1 heat flow model.

One possible explanation for the discrepancy is significant heat production in the crust, 
which would create high surface heat flow without requiring a thin lithosphere.  Another 
possibility is that the borehole measurements in this region are not in thermal equilibrium 
(Irina Artemieva, personal communication) and, therefore, are not representative of the 
regional heat flow.  It is also possible that in some regions the thermal modeling, which 
usually assumes a linear heat flow / heat production relationship, does not adequately 
explain the relationship between heat production at depth and surface heat flow.

The last region we compare in detail is the Tibetan Plateau and surrounding areas in 
Central Asia.  The surface wave study finds a marked thinning of the lithosphere under 
the plateau compared to India to the south, and the Tarim and Sichuan Basins to the north 
and east (Fig. 13a).  This is consistent with many recent seismic and gravity models that 
show a thickening of the lithosphere under the Himalayas and southwest Tibet and then 
abruptly thinning under the Tibetan Plateau (e.g. An and Shi, 2006; Zhang et al., 2007; 
Jiménez-Munt et al., 2008).  This supports the model of the thrusting and detachment of 
the Indian mantle lithosphere under Eurasia (Owens and Zandt, 1997).
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a) b)

Fig. 13. A comparison of lithospheric thickness estimates for the Tibetan Plateau from a) 
this study and b) the TC1 heat flow model.

The lithospheric thicknesses from the thermal model are very different for this region, 
showing an increase in lithospheric thickness under the plateau (Fig. 13b).  The high (~ 
80 mW/m2) surface heat flow (Artemieva and Mooney, 2001) for this region is somewhat 
higher than surrounding regions, which usually indicates a thinning of the lithosphere.  In 
many respects, however, Tibet as a region is the exception that might prove the rule.  Due 
to the detachment of the Indian lithosphere, this might not be a region well-modeled by 
simple thermal (or seismic) modeling assumptions. Also, perhaps because of its very 
dramatic recent tectonic history, this is one region where the thermal lithosphere is indeed 
different than the lithosphere calculated from seismic or gravity methods.

6. Discussion

Long period surface wave data can be used to provide estimates on lithospheric thickness, 
particularly where other estimates might not be available or reliable.  Even using simple 
models to invert the dispersion models for lithospheric structure, we are able to recover 
major tectonic features.  Most notably, we easily recover the deep lithospheric keels 
under cratons and the thinned lithosphere along plate boundaries.  We also find several 
Precambrian regions (East Saharan Metacraton and Sino-Korean Paraplatform) where the 
lithospheric lid was disrupted by more recent remobilization.

We also compared our results to several other estimates of lithospheric thickness, both 
seismic and otherwise.  Qualitatively, the maps between seismic estimates and other 
estimates (like thermal) are similar.  Quantitatively, there are still some existing 
differences among the various estimates.  There are a number of possible explanations for 
the observed differences.  First, given the simple procedure employed, there are probably 
aspects to modeling the seismic lithosphere that are not being captured using the current 
methods.  As mentioned earlier, surface waves are not sensitive enough to invert for 
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detailed crust and upper mantle structure, and large variations in our assumptions (vp/vs
ratio, lid structure) could bias our lithospheric estimates.  Ideally, one would like to 
model the structure with multiple datasets which can select among models which are non-
unique using individual datasets.  Unfortunately, this can probably only be done in 
selected regions, and not yet easily applied to broad regions.  Also, it seems clear that the 
group velocities used in the inversion should extend to longer periods.  We did not 
employ them here because the maps at longer periods are not as reliable as those in the 
range that was used.  

Of course, another explanation is that there are errors in the thermal thickness maps and 
estimates from SRFs that we are comparing our results to.  For example, how might using 
an isocontour other than 1300° C for the lithospheric boundary affect our comparison?  It 
is also clear that in some of our comparisons, there are some consistencies in results 
derived from like-data (e.g. seismic), but hard to reconcile with other estimates.  This 
brings up the suggestion that, in some cases at least, the seismic and thermal lithosphere 
may be fundamentally different quantities.  Lastly, the comparisons highlighted the fact 
that there are issues comparing the estimates because of radically-differing model 
resolutions.  It is likely that the differences we find are due to a combination of these 
factors.

In future work, we would like to incorporate longer-period data (T > 120 - 150 sec) 
which will likely improve estimates in regions with large lithospheric thickness.  This 
will occur when the long period group velocity maps improve.  In addition, it would be 
worth exploring some changes to the parameterization to reduce some of the systematic 
misfit between seismic and other estimates.  This could consist of introducing more 
complexity in the modeling, such as including transverse isotropy in the mantle, more 
crustal layers, and/or variable Poisson’s ratio in the crust and upper mantle.  Lastly, it 
would be worth exploring in finer details some of areas discussed in the Regional 
Comparisons section that has some discrepancies or inconsistencies among the various 
methods.  In these areas, it would be worth bringing many data sets to bear on the 
problem to find the models most consistent with the ensemble of data.
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Figure captions

Fig. 1.  a) Velocity profile and associated sensitivity kernels for long period Rayleigh 
waves; b) Dispersion for a model where the thickness of the lid is varied from 0 – 300 
km.

Fig. 2.  a) Rayleigh wave (triangles) and Love wave (circles) measurements and model 
fits (solid and dashed lines, respectively) of dispersion (left) and S-wave velocity profile 
(right) from Eastern Europe. b) Same plots for Western Europe.

Fig. 3.  a) Map of surface wave dispersion paths (blue lines) for 80 sec Rayleigh waves 
with events (yellow circles) and stations (red triangles) indicated.  b) Map of surface 
wave group velocity (in km/s) for 80 sec Rayleigh waves.

Fig. 4. An example of the velocity-depth profile for the grid search.  Numbers correspond 
to items referred to in the text.  M = Moho discontinuity. LAB = Lithospheric-
Asthenospheric Boundary.

Fig. 5.  Lithospheric thickness (in km) estimated from the modeling of long-period 
surface waves.  Platform and shield areas are indicated by single and double hatched 
lines.  Plate boundaries are indicated by the thick black lines.

Fig. 6.  Lithospheric thickness (in km) of the continents estimated from the thermal 
modeling of borehole heat flow measurements (TC1 model; Artemieva, 2006).

Fig. 7.  Lithospheric thickness (in km) of oceanic crust derived from oceanic ages and a 
lithospheric cooling model.

Fig. 8.  Shear-wave velocity perturbations from the tomographic model S20RTS 
(Ritsema et al., 2004).  Values are velocity differences (in %) from the PREM model.

Fig. 9.  Lithospheric thickness estimates made from S-wave receiver functions in Arabia 
(colored circles) compared to seismic (left) and thermal (right) estimates of the same 
region.

Fig. 10.  a) A comparison of lithospheric estimates from this study to estimates from the 
TC1 thermal model (magenta triangles), the lithospheric cooling model (blue diamonds), 
and S-wave receiver functions (cyan circles). b) Mean and range of one standard 
deviation for thermal and lithospheric cooling thicknesses in 25 km bins.  In both plots, 
the solid black lines indicate where the thicknesses are identical and where they are offset 
by 40 km.

Fig. 11.   A comparison of lithospheric thickness estimates for Central Africa from a) this 
study and b) the TC1 heat flow model.
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Fig. 12. A comparison of lithospheric thickness estimates for West-Central Siberia from 
a) this study and b) the TC1 heat flow model.

Fig. 13. A comparison of lithospheric thickness estimates for the Tibetan Plateau from a) 
this study and b) the TC1 heat flow model.


